

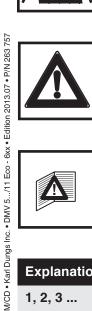
DUNG **Combustion Controls**

Content

Content Pag	je 1
Approvals Pag	je 1
Attention Pag	
Specification Pag	je 2
MountingPag	
Painting Valve Pag	
Protection from Radiant Heat Pag	
WiringPag	
Valve AdjustmentPag	-
Proof of Closure Switch Pag	
Side Taps Pag	
Valve Leakage Test Pag	-
Flow Curve Pag	
Pressure Drop for other Gases Pag	
Accessories & Replacement Pag	-

Approvals

CSA: ANSI Z21.21/CSA 6.5 C/I

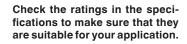


FM Pending

CE EN 161 MA State G1-0213-319 AGA Pending

Attention

Explanation of symbols


1, 2, 3 ... = Action = Instruction

The installation and maintenance of this product must be done under the supervision of an experienced and trained specialist. Never perform work if gas pressure or power is applied, or in the presence of an open flame.

Please read the instruction before installing or operating. Keep the instruction in a safe place. You find the instruction also at www. dungs.com If these instructions are not heeded, the result may be personal injury or damage to property.

Any adjustment and applicationspecific adjustment values must be made in accordance with the appliance-/boilermanufacturers instructions. Proof-Of-Closure switch can only be factory installed and set.

On completion of work on the safety valve, perform a leakage and function test.

This product is intended for installations covered by, but not limited to, the following fuel gas codes and standards: NFPA 54, IFGC (International Fuel Gas Code), or CSA B149.1 (for Canada) or the following equipment codes and standards: CSD-1, NFPA 86, NFPA 37, ANSI Z83.4/CSA 3.7, ANSI Z83.18, ANSI Z21.13/CSA 4.9, CSA B149.3, or CSA B149.6 (for Canada).

Specification	
DMV	Two normally closed safety shutoff valves in one housing. V1 and V2 are fast opening, fast closing.
DMV-D	Two normally closed safety shutoff valves in one housing. V1 and V2 are fast opening, fast closing. Adjustable max. flow on V1.
DMV-DLE	Two normally closed safety shutoff valves in one housing. V1 fast opening, fast closing. V2 slow opening, fast closing valve. Adjustable max. flow V1 and adjustable initial lift with V2.
• •	Does not include any Proof Of Closure Includes Proof of Closure on V2 Includes Proof of Closure both on V1 and V2

Max. Operating Pressure MOP = 7 PSI (500 mbar) FM Pending, CE MOP = 7 PSIG (500 mbar)

[V] [A] [Hz] [VA]

Electrical Ratings Available 110 - 120 VAC / 50 - 60 Hz 220 - 240 VAC / 50 - 60 Hz 24 VDC

Power Consumption with all coils energized (24 VDC/120 VAC & 230 VAC)

	Inrush (VA)	Operation (VA)
DMV-D(LE) 5065/11 Eco 6xx	130 VA	32 VA
DMV-D(LE) 5080/11 Eco 6xx	190 VA	40 VA
DMV-D(LE) 5100/11 Eco 6xx	250 VA	50 VA
DMV-D(LE) 5125/11 Eco 6xx	250 VA	50 VA

Max. Flow Setting (DMV-D & DMV-DLE) Adjustable on V1: Valve one: <5 to 35 % of total flow Initial Lift Adjustment (DMV-DLE) only Adjustable: 0 to 70 % of total flow; 0 to 35 % of stroke **Opening Time** DMV-D: V1 & V2 < 1 s DMV-DLE: V1 < 1 s; V2 10 to 20 s **Closing Time** V1 & V2 < 1 s

Enclosure Rating IP 54 / NEMA Type 12 **NEMA 4 OPTIONAL**

/6x2 are IP 54 / NEMA 12 /6x4 are NEMA 4 / IP 65

Ambient Temperature +5 °F ... +140 °F (-15 °C ... +60 °C)

Gases

Dry, natural gas, propane, butane; other noncorrosive gases. Suitable for up to 0.1 % by volume, dry H₂S. A "dry" gas has a dew point lower than +15 °F and its relative humidity is less than 60 %.

Materials in contact with Gas

Housing: Aluminium, Steel, free of nonferrous metals. Sealings on valve seats: NBR-based rubber / FKM for the VITON version.

Strainer 23 Mesh, installed in the housing upstream V1

Electrical Connection

DIN-connector (Order No. 210-319) required. M20 - 1/2 NPT Adapter 🖏 (Order No. 249-671) required for 2013.07 • P/N a conduit connection. Order parts separately. Wiring according to CSA C22.1 Part 1

Gas Connection

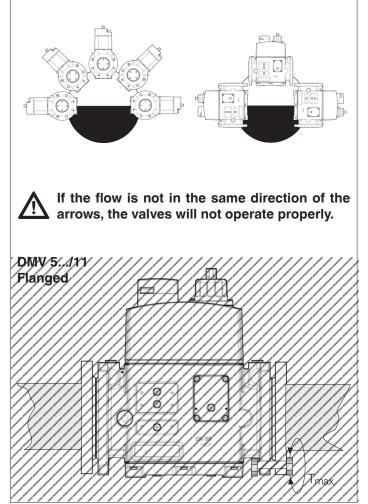
Flanged according to ISO 7005-1 or -2 (PN16)

VFM/

Additionally Required Electrical Parts				
Description	Order No.			
DIN Connector	210-319			
Conduit Adapter	249-671			

M/CD • Karl Dungs Inc. • DMV 5.../11 Eco - 6xx • Edition

Mounting


DMV 5.../Eco Flanged Mounting Procedure

- 1. Install the DMV 5.../Eco with the gas flow matching the direction indicated by the arrows on the casting.
- 2. Mount the DMV 5.../Eco with the solenoid vertical to horizontal.
- 3. Insert seal
- 4. Insert bolts, tighten in a star pattern to ensure uniform tightness.
- 5. Do not overtighten the bolts. Follow the maximum torque values listed.
- 6. After installation is complete, perform a leak test. (see "Valve Leakage Test")

Recommended Torque System Accessories	M8
	134 lb-in

Installation position

Recommended Torque for Bolts	Bolt	T _{max}
	M16 (DIN 939)	443 [lb-in]

valve o-rings, resulting in external gas leakage over time.

Painting Valve

- It is not recommended that this valve be painted. Painting covers date codes and other labels that identify this valve.
- If the valve needs to be painted, a paint free of volitile organic componants (VOC's) must be used. VOC's can damage
- During the painting process, use measures that will allow the valve's date code and other labeling information to be legible after the paint is dry

Protection from Radiant Heat

- Radiant heat must be considered as a heat source that could result in an ambient temperature higher than the rating of this valve.
- Provide propor shielding to protect against radiant heat.

Wiring

- Disconnect all power to the valves before wiring to prevent • electrical shock and equipment damage.
- Do not exceed the electrical ratings given in the specifica-• tions and on the valve.
- Attach a flexible 1/2" NPT conduit to the DIN connector.
- Route the wires through the conduit and the DIN connector. .
- Use 14 or 16 gauge wire for at least 75 °C (167 °F).
- Connect the wiring to the appropriate screw terminals in the DIN connector.
- Plug the DIN connector into the AMP terminals on the valve. Fasten the DIN connector with the screw supplied.

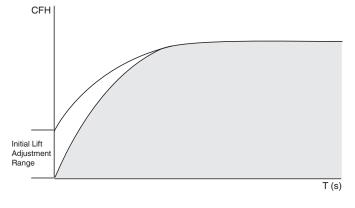
Label all wires prior to disconnection when servicing valves. Wiring errors can cause improper and dangerous operation. Verify proper operation after servicing.

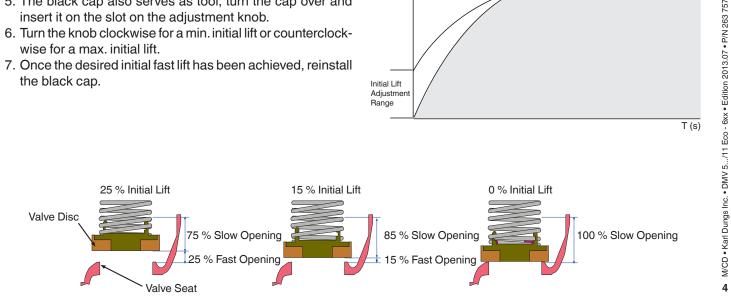
All wiring must comply with local electrical codes, ordinances and regulations.

Valve Adjustment

Flow Setting (Only on -D and DLE Versions)

- 1. The valve is factory set with the flow adjustment fully open.
- 2. Locate the flow adjustment on top of valve 2. There are two screws, the holding screw is recessed and has a blue sealing compound on it, while the pan head screw prodtrudes from the cap. Loosen the pan head screw until you can freely rotate the flow adjustment. Turn clockwise for less gas or counterclockwise for more gas. Check the flow at the burner with an orifice or flow meter.
- 3. Tighten the pan head screw on the adjustment cap.


Initial Lift Adjustment (DMV-DLE only)


The initial lift adjustment varies the initial gas flow through the valves as the valve seat begins to open. This adjustment can vary the initial flow between 0 % and 70 % of the total gas flow; 0 to 35 % of stroke. All DMV-DLE valves are factory set with no initial lift. To adjust the lift proceed as follows:

- 4. Unscrew the small black cap on top of the silver hydraulic brake to expose the initial lift adjustment knob.
- 5. The black cap also serves as tool, turn the cap over and insert it on the slot on the adjustment knob.
- 6. Turn the knob clockwise for a min. initial lift or counterclockwise for a max, initial lift.
- 7. Once the desired initial fast lift has been achieved, reinstall the black cap.

Initlal Lift Adjustment Max. Flow Adjustment n (h-1) DMV-DLE DMV-D

L2 (AC) Neutral - (DC) L1 (AC) Hot + (DC) Ground Valve 2 L1 (AC) Hot + (DC) Valve 1

DIN Connector

screw terminal connections

Proof of Closure Switch

Location

The proof of closure switch is factory installed on valve 2 of the DMV, it visually and electrically indicates valve position. When the valve is closed (NO position) an orange light is visible, when the valve is open (NC position) a green light is visible.

Conduit Connection

- Before connecting conduit to the proof of closure switch, position the proof of closure switch so that there is no torque from the wiring or conduit. If the switch needs to be rotated, loosen the slotted set screw ont the side. The switch may be removed from the brass adapter for wiring, however, DO NOT turn the proof of closure switch after tightening the slotted set screw.
- Tighten the slotted set screw so that the proof of closure switch housing is scure. (16 lb-in torque)

Wiring

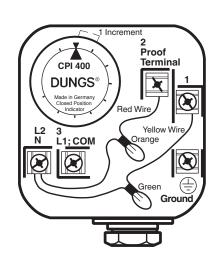
- Do not exceed the electrical ratings given in the proof of closure switch specifications.
- Use 14 or 16 guage wire for at least 75 °C (167 °F).
- Connect wire to the appropriate terminal of the proof of closure switch (see the wiring diagram). COM to the L1, Ground to ground, NO to the Proof of Closure terminal of the Flame Safeguard and N to L2. The ORANGE light shall be on when the valve is closed, the GREEN light shall be on when the valve is open (FM requirement).

Annual Testing

- Perform a switch continuity test at least annually to verify that the proof of closure switch is working properly.
- Make sure that there is no power to the proof of closure switch.
- Shut the upstream ball valve to stop the flow of gas into the valve train.
- With the valve de-energized, use a multimeter and verify that there is continuity between the switch contacts 3 (COM) and 2 (NO). Then verify that there is no continuity between the switch contacts 3 (COM) and 1 (NC).
- Energize the valve that the proof of closure switch is monted to. Use a multimeter and verify that there is continuity between the switch contacts 3 (COM) and 1 (NC). Then verify that there is no continuity between the switch-contacts 3 (COM) and 2 (NO).
- If you experience a problem, contact DUNGS
- De-energize the valve and replace the cover on the proof of closure switch
- Open the upstream ball valve

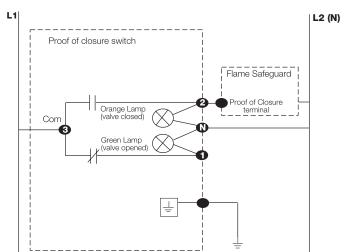
Proof of Closure Switch Specifications

Switch

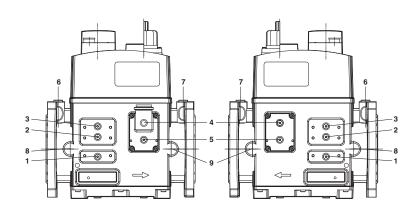

SPDT

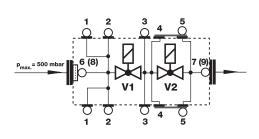
Switch Action

Valve open: Switch in NC position, Green light on. Valve closed: Switch in NO position, Orange light on. **Contact Rating**


10 A res, 8 FLA, CSA (5A res., 2 A ind.) 48 LRA @120 VAC Enclosure NEMA Type 4

Ambient/Fluid Temperature -40 °F to 150 °F




Do not wire the valve switch to close a circuit that will directly power another safety shutoff valve. Doing so could result in a safety valve being energized and opened rather than remaining closed.

5 ... 10

Side Taps

The G 1/8 ISO 228 taps are available on both sides upstream V1 (1, 2), between V1 and V2 (3, 4), downstream V2 (5). The G 1/8 test nipple (P/N 219-008) can be screwed in any of these

pressure tap ports. A G1/4" connection available on each flange (6, 7 and 2 G1/2" connections available optionally (8, 9)

Required Flanges for DMV 5/11 Series						
Body Size	Flange Description	# of Holes per Flange	Flange Order No.	Bolt size	**Bolt Order No.	***Gasket Order No.
DMV-D(LE) 5065/11	2 1/2" ISOFlanged	4	227-139	M16x65	135-930	50159
DMV-D(LE) 5065/11	2 1/2" ISO to NPT	4	243-690	M16x65	135-930	50159
DMV-D(LE) 5080/11	3" ISOFlanged	8	227-140	M16x65	135-930	50160
DMV-D(LE) 5080/11	3" ISO to NPT	8	243-219	M16x65	135-930	50160
DMV-D(LE) 5100/11	4" ISOFlanged	8	227-141	M16x65	135-930	50161
DMV-D(LE) 5125/11	5" ISOFlanged	8	227-142	M16x75	148-830	50162

*When a control is used alone, one mating flange is needed for each end, for a total of two flanges.

When one control is bolted to another, such as an FRS to a DMV, one mating flange is needed for each end, for a total of two flanges.

**includes one stud, 2 washers and 2 nuts.

***one gasket needed for each flange connection.

Valve Leakage Test

This leak test procedure tests the external sealing and valve seat sealing capabilities of the DMV automatic safety shutoff valve. Only qualified personnel should perform this test.

It is required that this test be done on the initial system startup, and then repeated at least annually. Possibly more often depending on the application, environmental parameters, and the requirements of the authority having jurisdiction.

Setup

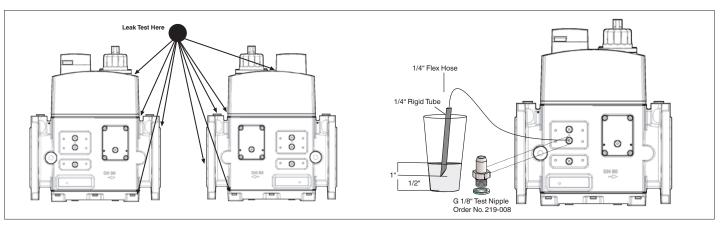
This test requires the following:

- A) Test nipples installed in the downstream pressure tap port of each automatic safety shutoff valve to make the required 1/4" hose connection in step 4.
- B) A transparent glass of water filled at least 1 inch from the bottom.
- C) A proper leak test tube. An aluminum or copper 1/4" rigid tube with a 45° cut at the end that is then connected to a 1/4" flexible hose of some convenient length provides for a more accurate leakage measurement.
 - However, a 45° cut at the end of the 1/4" flexible hose will suffice, but it will not likely be as accurate as the rigid tube.
- D) For detecting external leakages, an all purpose liquid leak detector solution is required.

Leak Test Procedure

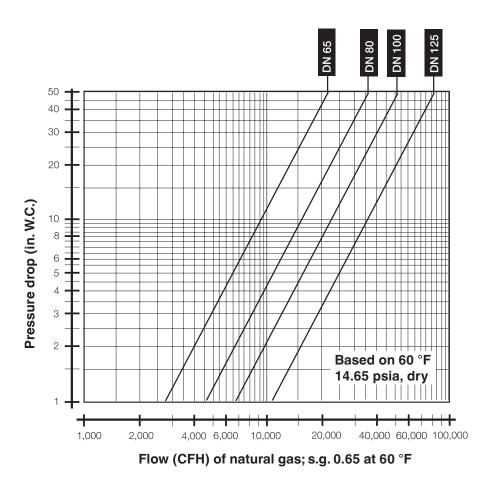
Use the illustration below as a reference.

1. With the upstream ball valve open, the downstream ballvalve closed and both valves energized, apply an all purpose liquid leak detector solution to the "External Leak-age Test Areas" indicated in the illustration below, to any accessories mounted to the safety valve, and to all gas piping and gas components downstream the equipment isolation valve, and the inlet and outlet gas piping of the automatic safety shutoff valve. The presence of bubbles


indicates a leak, which needs to be rectified before proceeding.

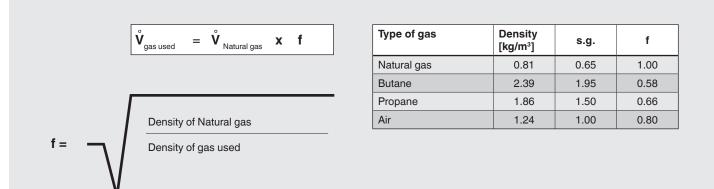
- 2. Then, de-energize the burner system and verify that both automatic safety shutoff valves are closed.
- 3. Close the upstream and downstream manual ball valve.
- 4. Using a screwdriver, slowly open the V1 test nipple (port 3 or port 4) by turning it counter clockwise to depressurize the volume between the two valves, and connect the 1/4" flexible hose to the test nipple.
- 5. Slowly open the upstream manual ball valve, and then provide for some time to allow potential leakage to charge the test chamber before measuring the valve seat leakage.
- 6. Immerse the 1/4 in. tube vertically 1/2 in. (12.7 mm) below the water surface. If bubbles emerge from the 1/4" tube and after the leakage rate has stabilized, count the number of bubbles appearing during a 10 second period. (See chart below for allowable leakage rates.)
- 7. Repeat the same procedure for valve V2 (port 5), except that valve #1 needs to be opened. (Energize only terminal 2 on the DIN connector to open valve 1).

After completing the above tests proceed as follows:


- 8. Verify that the downstream manual ball valve is closed, and both automatic safety shutoff valves are de-energized.
- 9. Remove the flexible hose, and close all test nipples.
- 10. With the upstream manual ball valve open, energize both automatic safety shutoff valves.
- 11. Use soapy water to leak test all test nipples to ensure that there are no leaks.
- 12. If no leakage is detected, de-energize all automatic safety shutoff valves, and open the downstream manual ball valve.

If leakage values are exceeded, replace value immediately.

Allowable Valve Seat	# of Bubbles in 10 s		
Leakage* up to 7 PSI inlet	Air	Natural Gas	LP
633 cc/hr	11	13	10
790 cc/hr	13	17	11
934 cc/hr	17	22	15
1156 cc/hr	22	27	18
	Leakage* up to 7 PSI inlet633 cc/hr790 cc/hr934 cc/hr934 cc/hr	Leakage* up to 7 PSI inlet Air 633 cc/hr 11 790 cc/hr 13 934 cc/hr 17	Leakage* up to 7 PSI inlet Air Natural Gas 633 cc/hr 11 13 790 cc/hr 13 17 934 cc/hr 17 22


*Based on air and test conditions per UL 429 Section 29. (Air or inert gas at a pressure of 1/4 psig and also at a pressure of one and one-half times maximum operating pressure differential, but not less than 1/2 psig. This test shall be applied with the valve installed in its intended position.) Volume of bubble defined in Table 2 of FCI 70-2-1998.

Pressure Drop for other Gases

To determine the pressure drop when using a gas other than natural gas, use the flow formula below and f value located in the table below to determine the "corrected" flow rate in CFH through the valve for the other gas used. For example, when using propane, divide the volume (CFH) of propane required for the application by the calculated value f (f = 0.66for propane). Use this "corrected" flow rate and the flow curve on the next page to determine pressure drop for propane.

Determining equivalent flow through valves using another gas

Accessories & Replace	ement			
Coil for	Coil Type	Order No. for 24 VDC	Order No. for 120 VAC	Order No. for 230 VAC
DMV 5065/11 Eco 6x2	1411/2P	256-633	255-478	255-477
DMV-D 5065/11 Eco 6x2	1411/2P	NA	256-630	256-629
DMV-DLE 5065/11 Eco 6x2	1411/2PL	NA	256-632	256-631
DMV-(D) 5080/11 Eco 632	1511/2P	248-503	253-713	247-869
DMV-DLE 5080/11 Eco 632	1511/2PL	NA	262-826	248-496
DMV-(D) 5100/11 Eco 632	1611/2P	248-504	253-677	247-870
DMV-DLE 5100/11 Eco 632	1611/2PL	NA	262-825	248-498
DMV-(D) 5125/11 Eco 632	1711/2P	248-505	253-678	247-871
DMV-DLE 5125/11 Eco 632	1711/2PL	NA	262-824	248-500
Printed Wiring Board	Coil Type	Order No. for 24 VDC	Order No. for 120 VAC	
DMV 5065/11 Eco 6x2	1411/2P	NA	NA	NA
DMV-D 5065/11 Eco 6x2	1411/2P	NA	NA	NA
DMV-DLE 5065/11 Eco 6x2	1411/2PL	NA	NA	NA
DMV-(D) 5080/11 Eco 632	1511/2P	257-604	257-137	248-492
DMV-DLE 5080/11 Eco 632	1511/2PL	NA	262-827	248-493
DMV-D 5100/11 Eco 632	1611/2P	257-604	257-137	248-492
DMV-DLE 5100/11 Eco 632	1611/2PL	NA	262-827	248-493
DMV-(D) 5125/11 Eco 632	1711/2P	257-604	257-137	248-492
DMV-DLE 5125/11 Eco 632	1711/2PL	NA	262-827	248-493
Hydraulic Brake	Order No.			
DMV-DLE 5065	223-158			
DMV-DLE 5080	223-158			
DMV-DLE 5100	223-157			
DMV-DLE 5125	223-157			
Accessories/Adapter	Order No.	Description		
Electrical DIN Connector (Hirschmann)	210-319			
PG 11 - 1/2 NPT Adapter	220-566			
M20 - 1/2 NPT Adapter	240-671			
Visual Indicator	217-665A	the valve and vis		
Valve Switch CPI 400	224-253A	Valve switch with	visual indication.	
Vent Line Adapter - 1" NPT	243-760	Field mountable		

Karl Dungs Inc. 3890 Pheasant Ridge Drive NE Suite 150 Blaine, MN 55449, U.S.A. Phone 763 582-1700 Fax 763 582-1799 e-mail info@karldungsusa.com Internet http://www.dungs.com/usa/ Karl Dungs GmbH & Co. KG P.O. Box 12 29 D-73602 Schorndorf, Germany Phone +49 (0)7181-804-0 Fax +49 (0)7181-804-166 e-mail info@dungs.com Internet http://www.dungs.com

It is necessary to replace safety-relevant components after they have reached the end of their useful life. DUNGS recommends replacing such components according to the following table: Es besteht die Notwendigkeit sicherheitsrelevante Komponenten nach Erreichen ihrer Nutzungsdauer auszutauschen. DUNGS empfiehlt den Austausch gemäss folgender Tabelle:

*Not valid for high	n performance indus	trial heat process applications.	See page 2
Gültig nur für häu	isliche Heizungsanla	agen	
Nicht gültig für Tl	nermprozessanwend	ungen mit Taktbetrieb	
Valve Type Safety relevant component Ventil Typ	Recommended replacer →Depends on the value Empfohlener Austausch →Je nachdem welcher N	Max. Cycle Rate Max.	
Sicherheits- relevante Komponente	USEFUL LIFE [Years] DUNGS recommends replacement after: NUTZUNGSDAUER [Jahre] DUNGS empfiehlt den	USEFUL LIFE [Rated Cycle Life (cycles)] DUNGS recommends replacement after: NUTZUNGSDAUER [Schaltspiele (auf/zu)] DUNGS empfiehlt den	Schalthäufigkeit
	Austausch nach:	Austausch nach:	
DMV-(D) SV-(D) MV(D)/602		1,000,000 cycles	500 /h
DMV/MV/SV: LE-Ausführungen (mit Hydraulikbremse) DMV/MV/SV: LE-Versions (with hydraulic brake)	10 Years 10 Jahre	500,000 cycles	20 /h
Gasventil <i>mit</i> DUNGS-Ventil- prüfsystem Gas valve <i>with</i> DUNGS valve proving system	Austausch nach erkann Replacement after error		
VPS 504*			20 /h
VDK 200*	10 Years	250,000 cycles	15 /h
CPI 400 CPI 401	10 Jahre	1,000,000 cycles @ 1 A and 120 VAC 100,000 cycles @ 10 A and 120 VAC	1,000 /h

Änderungen, die dem technischen Fortschritt dienen, vorbehalten

We reserve the right to make modifications in the course of technical development.

Karl Dungs Inc. 3890 Pheasant Ridge Drive NE Suite 150 Blaine, MN 55449, U.S.A. Phone 763 582-1700 Fax 763 582-1799 e-mail info@karldungsusa.com Internet http://www.dungs.com/usa/ Karl Dungs GmbH & Co. KG P.O. Box 12 29 D-73602 Schorndorf, Germany Phone +49 (0)7181-804-0 Fax +49 (0)7181-804-166 e-mail info@dungs.com Internet http://www.dungs.com

Replacement safety relevant components Austausch sicherheitsrelevanter Komponenten

It is necessary to replace safety-relevant components after they have reached the end of their useful life.

DUNGS recommends replacing such components according to the following table: Es besteht die Notwendigkeit sicherheitsrelevante Komponenten nach Erreichenihrer Nutzungsdauer auszutauschen. DUNGS empfiehlt den Austausch gemäss folgender Tabelle:

Valve Type Safety relevant component Ventil Typ	Recommended replaceme →Depends on the value w Empfohlener Austausch na →Je nachdem welcher We	Max. Cycle Rate Max.	
Sicherheits- relevante Komponente	USEFUL LIFE [Years] DUNGS recommends replacement after: NUTZUNGSDAUER [Jahre] DUNGS empfiehlt den Austausch nach:	USEFUL LIFE [Rated Cycle Life (cycles)] DUNGS recommends replacement after: NUTZUNGSDAUER [Schaltspiele (auf/zu)] DUNGS empfiehlt den Austausch nach:	Schalthäufigkeit
MV /602 NPT ½ - NPT 2 (no main flow adjustment)		3.000.000 cycles	
MVD /602 NPT ½ - NPT 1 (with main flow adjustment)	3 Years 3 Jahre	3,000,000 Cycles	1,000 /h
MVD /602 NPT 1¼ - NPT 3 (with main flow adjustment)		1,000,000 cycles	
Conditions	Clean gas (NG, LNG,	LPG): maximum 50 micron gas	s filter required!
	Dry Gas: ■ relative humidity ■ dew point of the g	< 60 % as < −14 °F }"O	ry"

Änderungen, die dem technischen Fortschritt dienen, vorbehalten

We reserve the right to make modifications in the course of technical development.

Karl Dungs Inc. 3890 Pheasant Ridge Drive NE Suite 150 Blaine, MN 55449, U.S.A. Phone 763 582-1700 Fax 763 582-1799 e-mail info@karldungsusa.com Internet http://www.dungs.com/usa/ Karl Dungs GmbH & Co. KG P.O. Box 12 29 D-73602 Schorndorf, Germany Phone +49 (0)7181-804-0 Fax +49 (0)7181-804-166 e-mail info@dungs.com Internet http://www.dungs.com